OLDER ADULT COGNITION IS BETTER IN THE MORNING

OLDER ADULT COGNITION IS BETTER IN THE MORNING

From the FMS Global News Desk of Jeanne Hambleton Posted on August 6, 2014                          From Stone Hearth News Eureka Alert

 

Toronto, Canada – Older adults who are tested at their optimal time of day (the morning), not only perform better on demanding cognitive tasks but also activate the same brain networks responsible for paying attention and suppressing distraction as younger adults, according to Canadian researchers.

The study, published online July 7th in the journal Psychology and Aging (ahead of print publication), has yielded some of the strongest evidence yet that there are noticeable differences in brain function across the day for older adults.

“Time of day really does matter when testing older adults. This age group is more focused and better able to ignore distraction in the morning than in the afternoon,” said lead author John Anderson, a PhD candidate with the Rotman Research Institute at Baycrest Health Sciences and University of Toronto, Department of Psychology.

“Their improved cognitive performance in the morning correlated with greater activation of the brain’s attentional control regions – the rostral prefrontal and superior parietal cortex – similar to that of younger adults.”

Asked how his team’s findings may be useful to older adults in their daily activities, Anderson recommended that older adults try to schedule their most mentally-challenging tasks for the morning time. Those tasks could include doing taxes, taking a test (such as a driver’s license renewal), seeing a doctor about a new condition, or cooking an unfamiliar recipe.

In the study, 16 younger adults (aged 19 – 30) and 16 older adults (aged 60-82) participated in a series of memory tests during the afternoon from 1 – 5 p.m. The tests involved studying and recalling a series of picture and word combinations flashed on a computer screen.

Irrelevant words linked to certain pictures and irrelevant pictures linked to certain words also flashed on the screen as a distraction. During the testing, participants’ brains were scanned with fMRI which allows researchers to detect with great precision which areas of the brain are activated.

Older adults were 10 percent more likely to pay attention to the distracting information than younger adults who were able to successfully focus and block this information. The fMRI data confirmed that older adults showed substantially less engagement of the attentional control areas of the brain compared to younger adults. Indeed, older adults tested in the afternoon were “idling” – showing activations in the default mode (a set of regions that come online primarily when a person is resting or thinking about nothing in particular) indicating that perhaps they were having great difficulty focusing. When a person is fully engaged with focusing, resting state activations are suppressed.

When 18 older adults were morning tested (8:30 a.m. – 10:30 a.m.) they performed noticeably better, according to two separate behavioural measures of inhibitory control. They attended to fewer distracting items than their peers tested at off-peak times of day, closing the age difference gap in performance with younger adults. Importantly, older adults tested in the morning activated the same brain areas young adults did to successfully ignore the distracting information. This suggests that ‘when’ older adults are tested is important for both how they perform and what brain activity one should expert to see.

“Our research is consistent with previous science reports showing that at a time of day that matches circadian arousal patterns, older adults are able to resist distraction,” said Dr. Lynn Hasher, senior author on the paper and a leading authority in attention and inhibitory functioning in younger and older adults.

The Baycrest findings offer a cautionary flag to those who study cognitive function in older adults. “Since older adults tend to be morning-type people, ignoring time of day when testing them on some tasks may create an inaccurate picture of age differences in brain function,” said Dr. Hasher, senior scientist at Baycrest’s Rotman Research Institute and Professor of Psychology at University of Toronto.

The Baycrest study was funded by the Canadian Institutes for Health Research, and the Natural Sciences and Engineering Research Council.

 

ELDERLY WITH DEPRESSION, MILD COGNITIVE IMPAIRMENT MORE VULNERABLE TO ACCELERATED BRAIN AGING

From the FMS Global News Desk of Jeanne Hambleton. Stone Hearth News Eureka Alert

 

PITTSBURGH, Aug. 7, 2014 – People who develop depression and mild cognitive impairment (MCI) after age 65 are more likely to have biological and brain imaging markers that reflect a greater vulnerability for accelerated brain aging, according to a study conducted by researchers at the University of Pittsburgh School of Medicine. The findings were published online in Molecular Psychiatry.

Older adults with major depression have double the risk of developing dementia in the future compared with those who have never had the mood disorder, said senior investigator Meryl A. Butters, Ph.D., associate professor of psychiatry, Pitt School of Medicine. But there’s no clear explanation for why a treatable mood disorder like depression leads to increased risk for dementia, a progressive brain disease. Until now, most studies have examined only one or two biomarkers to get at this question.

“Our study represents a significant advance because it provides a more comprehensive and integrated view of the neurobiological changes related to mild cognitive impairment in late-life,” she said.

“Better understanding of the neurobiology of cognitive impairment in depression can provide new targets for developing more specific treatments, not only for its prevention and treatment, but also for its down-stream negative outcomes, including the development of dementia and related disorders.”

The team collected blood samples from 80 older adults in remission after being treated for major depression, 36 of whom had MCI and 44 with normal cognitive function. Their blood was tested for 242 proteins involved in biologic pathways associated with cancer, cardiovascular diseases, and metabolic disorders as well as psychiatric and neurodegenerative disorders.

The researchers also performed PET and MRI brain scans on the participants to look for indicators of cerebrovascular disease, brain atrophy or shrinkage, and beta-amyloid, which is the protein that makes up the brain plaques associated with Alzheimer’s disease.

The MCI group was more likely to have differences in the biologic activity of 24 proteins that are involved in the regulation of immune and inflammatory pathways, intracellular signaling, cell survival, and protein and lipid balance.

Brain scans revealed a greater propensity for cerebrovascular disease – for example, small strokes – in the MCI group, but there was no difference in the amount of beta-amyloid deposition.

“If you take these results altogether, they suggest that people with depression and cognitive impairment may be more vulnerable to accelerated brain aging, which in turn puts them at risk for developing dementia,” Dr. Butters said. “Ultimately, if we can understand what happens in the brain when people are depressed and suffer cognitive impairment, we can then develop strategies to slow or perhaps stop the impairment from progressing to dementia.”

Next steps include assessing the protein panel in older people with normal cognitive function who have not experienced depression.

Co-authors of the study include Etienne Sibille, Ph.D., Ying Ding, Ph.D., George Tseng, Ph.D., Howard Aizenstein, M.D., Ph.D., Frances Lotrich, M.D., Ph.D., James T. Becker, Ph.D., Oscar L. Lopez, M.D., Michael T. Lotze M.D., William E. Klunk M.D., Ph.D., and Charles F. Reynolds, M.D., all of the University of Pittsburgh; and the first author is Breno S. Diniz, M.D., Ph.D., now of the Federal University of Minas Gerais, Brazil.

The project was funded by National Institutes of Health grants MH080240, MH90333 (ACISR for Late Life Depression Prevention and Treatment), AG05133 (Alzheimer Disease Research Center), MH09456; CA047904-22S1, CA160417, CA181450; the John A. Hartford Foundation Center of Excellence in Geriatric Psychiatry; and the Brazilian Intramural Research Program.

About the University of Pittsburgh School of Medicine

As one of the nation’s leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region’s economy.

 

STUDY: LINK BETWEEN VITAMIN D AND DEMENTIA RISK CONFIRMED


From the FMS Global News Desk of Jeanne Hambleton
Embargo expired: 6-Aug-2014 Citations Neurology
Source Newsroom: American Academy of Neurology (AAN)

 

Newswise — MINNEAPOLIS – In the largest study of its kind, researchers suggests that in older people, not getting enough vitamin D may double the risk of developing dementia and Alzheimer’s disease. The study is published in the August 6, 2014, online issue of Neurology®, the medical journal of the American Academy of Neurology.

The study looked at blood levels of vitamin D, which includes vitamin D from food, supplements and sun exposure. Dietary vitamin D is found in fatty fish such as salmon, tuna or mackerel and milk, eggs and cheese.

“We expected to find an association between low Vitamin D levels and the risk of dementia and Alzheimer’s disease, but the results were surprising—we actually found that the association was twice as strong as we anticipated,” said study author David J. Llewellyn, PhD, of the University of Exeter Medical School in the United Kingdom.

For the study, 1,658 people over the age of 65 who were dementia-free had their vitamin D blood levels tested. After an average of six years, 171 participants developed dementia and 102 had Alzheimer’s disease.

The study found that people with low levels of vitamin D had a 53-percent increased risk of developing dementia and those who were severely deficient had a 125-percent increased risk compared to participants with normal levels of vitamin D.

People with lower levels of vitamin D were nearly 70 percent more likely to develop Alzheimer’s disease and those who had severe deficiency were over 120 percent more likely to develop the disease.

The results remained the same after researchers adjusted for other factors that could affect risk of dementia, such as education, smoking and alcohol consumption.

“Clinical trials are now needed to establish whether eating foods such as oily fish or taking vitamin D supplements can delay or even prevent the onset of Alzheimer’s disease and dementia. We need to be cautious at this early stage and our latest results do not demonstrate that low vitamin D levels cause dementia.

“That said, our findings are very encouraging, and even if a small number of people could benefit, this would have enormous public health implications given the devastating and costly nature of dementia,” said Llewellyn.

The study was supported by the National Heart, Lung, and Blood Institute, the National Institute of Neurological Disorders and Stroke, the National Institute on Aging, the Alzheimer’s Association, the Mary Kinross Charitable Trust, the James Tudor Foundation, the Halpin Trust, the Age Related Diseases and Health Trust, the Norman Family Charitable Trust and the UK National Institute for Health Research.

To learn more about dementia, please visit http://www.aan.com/patients.

The American Academy of Neurology, an association of more than 28,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer’s disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson’s disease and epilepsy.

We had better grab as much sunshine as we can but also avoiding skin cancer and take the supplements apparently.  See you tomorrow. Jeanne

 

 

 

 

 

 

 

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s